

## **JAY-003-1163002** Seat No. \_\_\_\_\_

## M. Sc. (Mathematics) (Sem. III) (CBCS) Examination December - 2019

Maths: Functional Analysis: CMT - 3002 (Old & New Course)

> Faculty Code: 003 Subject Code: 1163002

Time:  $2\frac{1}{2}$  Hours] [Total Marks: 70]

## **Instructions:**

- (1) There are five questions.
- (2) All questions are compulsory.
- (3) Each question carries 14 marks.
- 1 Answer the following questions : (Any seven)

 $7 \times 2 = 14$ 

- 1. Define:
  - i) Taxicab metric
  - ii) Accumulation point in a metric space.
- 2. Write in brief about the function space sequence space s
- 3. Is every metric in a metric space complete? Justify.
- 4. Prove that every convergent sequence in a metic space is a Cauchy sequence.
- 5. Define:
  - i) Cauchy sequence in a metric space
  - ii) Cauchy sequence in a normed linear space.
- 6. Define Complete metric space with example.
- 7. State and prove Translation invariance of metric d in a metric space?
- 8. Define:
  - i) Dual Space
  - ii) Algebraic Dual Space.
- 9. Define:
  - i) Linear Functional
  - ii) Bounded Linear Operator.
- 10. Define Banach space with example.

- 2 Answer the following questions: (Any two)
- $2 \times 7 = 14$
- 1. State and prove Holder inequality for sums.
- 2. State and prove Minkowski inequality for sums.
- 3. Prove that A subspace M of a complete metric space X is itself complete if and only id the set M is closed in X.
- 4. Prove the completeness of the space IR".
- **3** Answer the following questions :

 $2 \times 7 = 14$ 

- a) Let X = (X,d) be a metric space. Then, prove that a convergent sequence in X is bounded and its limit is unique.
- b) Let X = (X, d) be a metric space. Then, prove that if  $x_n \to x$  and  $y_n \to y$ , then d  $(x_n, y_n) \to d(x, Y)$ .

OR

- a) Let T be a linear operant. Then, prove that the range of T, R(T), is a vector space.
- b) Let T be a linear operator. Then, prove that the null space of T, N(T), is a vector space.
- 4 Answer the following questions: (Any two)

 $2 \times 7 = 14$ 

- 1. Prove that if in an inner product space,  $x_n\to x$  and  $y_n\to y,$  then  ${<}x_n,\ y_n{>}\to {<}x,\ y{>}.$
- 2. State and prove Parseval relation.
- 3. Let X and Y be the inner product spaces and  $Q: X \rightarrow Y$  be a bounded linear operator. Then, prove that :
  - a) Q = 0 if and only if  $\langle Qx, y \rangle = 0$  for all  $x \in X$  and  $y \in Y$ .
  - b) If  $Q: X \to X$ , where X is complex and  $\langle Qx, x \rangle = 0$  for all  $x \in X$ , then Q = 0.
- 5 Answer the following questions: (Any two)

 $2 \times 7 = 14$ 

1. Define Hilbert space and Hilbert adjoint operator. Let  $H_1$  and  $H_2$  be the Hilbert spaces,  $S: H_1 \to H_2$  and  $T: H_1 \to H_2$  be the bounded linear operators and x be any scalar. Then, prove that

- i)  $< T^*y, x> _ < y, Tx>$
- ii)  $(S + T)^* = S^* + T^*$ .
- iii)  $(T^*)^* = T$ .
- iv) T\*T = 0 if and only if T=0.
- v) (ST)\* =T\*S\*.
- 2. Define Self ad joint operator and unitary operator. Let the operators  $U: H \to H$  and  $V: H \to H$  be unitary, where h is the Hilbert space. Then, prove that
  - i) U is isometric.
  - ii) | | U | | = 1; provided  $H \neq \{0\}$ .
  - iii)  $U^{-1} = (U^*)$  is unitary.
  - iv) U is normal.
  - v) UV is unitary.
- 3. State and prove Hann Banach Theorem (Normed linear spaces).
- 4. State and prove Riesz lemma.
- 5. State and prove Cauchy Schwarz inequality for an inner product space.